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We consider the problem of building a model to predict protein-protein interactions (PPIs)
between the bacterial species Salmonella Typhimurium and the plant host Arabidopsis
thaliana which is a host-pathogen pair for which no known PPIs are available. To achieve
this, we present approaches, which use homology and statistical learning methods called
“transfer learning.” In the transfer learning setting, the task of predicting PPIs between
Arabidopsis and its pathogen S. Typhimurium is called the “target task.” The presented
approaches utilize labeled data i.e., known PPIs of other host-pathogen pairs (we call
these PPIs the “source tasks”). The homology based approaches use heuristics based on
biological intuition to predict PPIs. The transfer learning methods use the similarity of the
PPIs from the source tasks to the target task to build a model. For a quantitative evaluation
we consider Salmonella-mouse PPI prediction and some other host-pathogen tasks where
known PPIs exist. We use metrics such as precision and recall and our results show that
our methods perform well on the target task in various transfer settings. We present a
brief qualitative analysis of the Arabidopsis-Salmonella predicted interactions. We filter
the predictions from all approaches using Gene Ontology term enrichment and only those
interactions involving Salmonella effectors. Thereby we observe that Arabidopsis proteins
involved e.g., in transcriptional regulation, hormone mediated signaling and defense
response may be affected by Salmonella.

Keywords: protein interaction prediction, host pathogen protein interactions, plant pathogen protein interactions,

machine learning methods, transfer learning, kernel mean matching

1. INTRODUCTION
Understanding the workings of plant responses to pathogens is
an important fundamental questions that also has enormous eco-
nomic importance due to the role of pathogens in food produc-
tion and processing. While “classical” plant pathogens cause crop
losses during production by impacting on plant health, processing
of plant-based food can lead to contamination by opportunistic
pathogens. It is becoming increasingly supported by experimen-
tal evidence that some human bacterial pathogens can colonize
plants and cause disease (Kirzinger et al., 2011). Salmonella is
one of these bacterial species with extremely broad host range
that infects not only animals, but also plants (Hernandez-Reyes
and Schikora, 2013). Evidence increases that Salmonella can uti-
lize plants as alternative host and can be considered as a bona
fide plant pathogen. In this respect it has been reported that
(a) Salmonella actively invades plant cells, proliferates there and
can cause disease symptoms (Schikora et al., 2008; Berger et al.,
2011) (b) the plant recognizes Salmonella and plant defense
responses are activated (Iniguez et al., 2005; Schikora et al., 2008)
and (c) that functional Type Three Secretion Systems (TTSS) 1
and 2 are important for Salmonella pathogenicity in plants with
respect to bacterial proliferation and suppression of plant defense
responses (Iniguez et al., 2005; Schikora et al., 2011; Shirron and
Yaron, 2011). Salmonella TTSS-1 and 2 encode proteins, so called

effectors, which are known to be translocated into the animal
host cell in order to manipulate host cell mechanisms mainly
via PPIs (Schleker et al., 2012). Hence, it may be assumed that
Salmonella utilizes the same proteins during its communication
with animals and plant. However, the details of this communica-
tion are not known. A critical component of the communication
between any host and its pathogen are PPIs. However, the infec-
tion of plants by Salmonella is only a nascent field, so there are no
known PPIs for Salmonella with any plant reported yet. Even for
the well established pathogen-host pair, Salmonella-human, rel-
atively few interactions are known (Schleker et al., 2012). Only
62 interactions between Salmonella and mostly human proteins
(some Salmonella interactions involve other mammalian species,
such as mouse and rat) are known to date. Because there exists
no plant-Salmonella interactions data, we need to rely on compu-
tational methods to predict them [reviewed in the accompanying
paper (Schleker et al., 2015)].

In this paper, we describe techniques to build computa-
tional models to predict interactions between the model plant,
A. thaliana, and S. Typhimurium. Since there is no labeled data
of this host-pathogen pair available, we aim to transfer knowl-
edge from known host-pathogen PPI data of other organisms.
We use various statistical methods to build models for predict-
ing host-pathogen PPIs. In each case, we cast the PPI prediction
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FIGURE 1 | Transfer of PPIs from the source host (for ex: human) to

another host, the target host (for example Arabidopsis), for the

common pathogen, Salmonella.

problem as a binary classification task, where given two proteins
the goal is to learn a function that predicts whether the pair would
interact or not. We derive features on every protein pair using pro-
tein sequence data. Each host-pathogen PPI prediction problem
is considered as one task. Figure 1 shows our problem setting.
The upper host-pathogen task with Salmonella as pathogen and
human as the host is the source task. The lower task is the target
task. The arrow shows the direction of knowledge transfer.

In order to transfer knowledge from one organism to another,
we need to utilize some measure of similarity between them. This
similarity can be defined between smaller units such as individ-
ual proteins or genes from the organisms or higher level units.
The higher the similarity, the greater the information transfer
between them. Hence the notion of similarity is very critical to the
results we obtain from such a transfer based method and should
be biologically motivated. Our methods enable the transfer of
knowledge using the following mechanisms:

• We use the structural similarity between the individual proteins
of the two hosts measured using protein sequence alignment.
This follows from the biological intuition that structurally sim-
ilar proteins in two different organisms are very likely to have
similar functions. Hence a pathogen that wants to disrupt a
specific function will target structurally similar proteins in
different hosts.

• Interactome-level similarity, comparing the human PPI graph
with the plant PPI graph. Any biological process in an organ-
ism involves the participation of several proteins and more
importantly the interactions between these. By comparing the
interactomes of different hosts, we are comparing them at the
biological process-level. The components of the two graphs
that are highly similar will most likely correspond to similar
processes in the two organisms.

• Distributional similarity between the protein pairs: here, we
identify which of the human-Salmonella protein pairs are the
most similar (hence most relevant) to the plant-Salmonella
protein pairs. This similarity is computed using the features of

the protein-pairs. Since it is distributional similarity, it involves
a comparison over all protein pairs from both organisms. Only
the most relevant human-Salmonella protein pairs are used to
build a model.

The main contributions of this paper are:

(1) We present methods that combine known PPIs from various
sources to build a model for a new task

(2) We evaluate our methods quantitatively and our results show
the benefits in performance that are possible if we incor-
porate the similarity information discussed in the previous
paragraphs

(3) We present the first machine learning based predictions for
plant-Salmonella PPIs.

In the rest of the paper, we start by describing the host-pathogen
PPI datasets we use in Section 2, followed by a detailed description
of our methods in Section 3 and a quantitative and qualitative
analysis of the results in Section 5.

2. SOURCE TASKS
As source tasks we used the known PPIs between vari-
ous other hosts and pathogens. Many of these interactions
were obtained from the PHISTO (Tekir et al., 2012) database
which reports literature-curated known interactions. For PPIs
between human and Salmonella we use the manually literature-
curated interactions reported in Schleker et al. (2012). Please
note that all of these interactions come from biochemical
and biophysical experiments. The details of the dataset used
in each approach are shown in Table 1 and they are avail-
able for download from http://www.cs.cmu.edu/~mkshirsa/
data/frontiers2014/data.zip. Our first approach is a rule-based
approach and it uses human-Salmonella PPIs from two sources:
the 62 experimentally generated PPIs reported in Schleker et al.
(2012) and the predicted PPIs from Kshirsagar et al. (2012). Please
note that this is the only method that uses any predicted PPIs
as “ground truth.” All other methods discussed in subsequent
sections of this paper do not use any predicted PPIs as source.
They use only PPIs validated experimentally by biochemical and
biophysical methods.

2.1. SALMONELLA SPECIES/STRAINS CONSIDERED
The source data that we use for human-Salmonella from Schleker
et al. (2012) comes from two different strains: Salmonella
Typhimurium strain LT2 and Salmonella Typhimurium strain
SL 1344. One of our three approaches (row-1 of Table 1) uses
human-Salmonella predicted PPIs. These predicted PPIs from
Kshirsagar et al. (2012) contain Salmonella proteins from two
additional strains: Salmonella enteritidis PT4 and Salmonella
Typhi. From henceforth, for the sake of brevity, we will
refer to proteins from all strains as Salmonella proteins. For
Salmonella proteins, we used the UniprotKB database (The
UniProt Consortium, 2014) to obtain all proteins from the var-
ious strains. For Arabidopsis thaliana proteins, we used the TAIR
database (Lamesch et al., 2012).

Frontiers in Microbiology | Plant-Microbe Interaction February 2015 | Volume 6 | Article 36 | 2

http://www.cs.cmu.edu/~mkshirsa/data/frontiers2014/data.zip
http://www.cs.cmu.edu/~mkshirsa/data/frontiers2014/data.zip
http://www.frontiersin.org/Plant-Microbe_Interaction
http://www.frontiersin.org/Plant-Microbe_Interaction
http://www.frontiersin.org/Plant-Microbe_Interaction/archive


Kshirsagar et al. Techniques for transferring host-pathogen protein interactions

Table 1 | Datasets used in the various approaches, their sizes and the appropriate citations.

Approach(es) Source task(s) Number of

interactions

Citation for interactions data Feature set

1. Homology based Human-Salmonella known PPI
Human-Salmonella predictions

62
190,868

Schleker et al., 2012�

Kshirsagar et al., 2012
No feature set. Heuristics are
used to infer interactions

2. T-SVM# Human-Salmonella known PPI 62 Schleker et al., 2012� (a) Protein sequence k-mers
(b) Gene expression (from GEO)
(c) GO term similarity

3. KMM†-SVM Human-Salmonella known PPI 62 Schleker et al., 2012�

Protein sequence k-mers

Human-Francisella tularensis 1380

Human-E.coli 32

A. thaliana - Agrobact. tumefaciens 22 PHISTO�

A. thaliana - E. coli 15 (Tekir et al., 2012)

A. thaliana - Pseudomonas syringae 13

A. thaliana - Synechocyctis 23

†KMM, Kernel Mean Matching; #SVM, Support Vector Machine; GO, Gene Ontology.
�This source reports PPIs validated experimentally by biochemical and biophysical methods.

3. METHODS
In the previous section, we described the dataset used in our
various approaches. We now describe the details of the methods
we use.

3.1. APPROACH-1 : HOMOLOGY BASED TRANSFER
In this approach, we use the sequence similarity between the
plant and human protein sequences to infer new interactions.
We use two techniques to predict interactions between plant
and Salmonella proteins. The first technique uses plant-human
orthologs and the second is based on plant-human homology
(sequence alignment scores). Both techniques use two sources of
interactions: true PPIs from Schleker et al. (2012) and predicted
PPIs from Kshirsagar et al. (2012). Please note that this is the only
method that uses any predicted PPIs as “ground truth.” All other
methods discussed in subsequent sections of this paper do not use
any predicted PPIs as source.

Homologs and Orthologs: Homologous pairs of genes are
related by descent from a common ancestral DNA sequence.
These can be either orthologs: genes that evolved from a com-
mon ancestral gene by speciation or paralogs: genes separated by
the event of genetic duplication. We obtained orthologs from the
InParanoid database (Ostlund et al., 2010). To find homologous
pairs of proteins, we used BLAST sequence alignment with an
e-value threshold of 0.01.

(a) Host ortholog based predictions: We start with the known
human-Salmonella PPIs. For each interaction, we search for
an ortholog of the human protein in Arabidopsis. If one
exists, we infer an interaction between the Salmonella and the
Arabidopsis protein. This is similar to finding interologs, with
the exception that we restrict ourselves to orthologs of the
host protein rather than considering all possible homologs
of both the host and pathogen proteins. Figure 2 illustrates
this simple heuristic. There are 62 human-Salmonella PPIs in

FIGURE 2 | Approach-1 (a) Ortholog based protein interaction

inference. “S1” represents a Salmonella protein and S2 is the homolog of
S1 or S1 itself. H represents a human protein and A represents an
Arabidopsis protein that is an ortholog of the human protein.

our dataset. Using this ortholog based inference for the host
proteins, we obtained a total of 25 plant-Salmonella PPIs as
some of the human proteins did not have any plant orthologs.
The orthologous Arabidopsis proteins for the human proteins
were obtained from the InParanoid database (Ostlund et al.,
2010).

(b) Host graph alignment based predictions: This method uses
homologs between the human and plant proteins. Since the
set of known PPIs is very small (62 interactions), here we
use them to generate “bootstrap” interactions. The known
62 PPIs are used to build a classifier using the method pub-
lished in Kshirsagar et al. (2012) to generate a total of 190,868
human-Salmonella PPI predictions. These predicted PPIs
form the “bootstrap” PPIs and will be used in a graph-based
transfer approach. In this graph-based transfer method, we
first align the PPI graphs of the two host organisms using
NetworkBlast (Sharan et al., 2005). The human PPI net-
work was obtained from the HPRD database (Prasad et al.,
2009) and the plant-plant PPIs from TAIR database (Lamesch
et al., 2012). The algorithm aligns the human PPI graph with
the plant PPI graph using the pairs of homologous proteins
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between the two organisms. To find the homologous pro-
teins, we used BLAST sequence alignment with an e-value
threshold of 0.01. Next, we use NetworkBlast to find the
graph components that are the most similar across the two
graphs. We call them the “enriched components.” By com-
paring the interactomes of the two hosts, we are comparing
them at the biological process-level. The components of the
two graphs that are highly similar will most likely correspond
to similar processes in the two organisms. NetworkBlast finds
a total of 2329 enriched protein complex pairs between the
two host organisms. Figure 3 shows one such enriched pro-
tein complex pair: the complex on the left is from Arabidopsis
and the one on the right is from human. Using these we
determine the plant proteins that are the most likely tar-
gets for the different Salmonella proteins as shown in the
Figure 3.
For each PPI between a human protein from an enriched
protein complex, we infer an equivalent PPI between the cor-
responding plant protein and the Salmonella protein (exam-
ple, sipA in the Figure 3). This filtering procedure gives us
a final of 23,664 plant-Salmonella PPIs. The biological rele-
vance for using the enriched graph components lies in the
premise that clusters of similarly interacting proteins across
the two organisms will represent biological processes that
have been conserved in the two organisms. Hence, the pro-
teins in these components are also likely to be conserved as
pathogen targets.

3.2. APPROACH-2: TRANSDUCTIVE LEARNING
This method considers the target task i.e., plant proteins while
building a model. It provides a way of incorporating the tar-
get task information during model construction. Conventional
inductive learning approaches such as the Support Vector
Machine classifier use only the training examples to build a

model. Transductive learning approaches also use the distribution
of the unlabeled test examples. They jointly learn the labels on the
test examples while minimizing the error on the labeled training
examples. This often results in a good performance, as the clas-
sifier has additional information about the unseen test data. In
our work here, we use transductive learning for transfer learning
in particular the Transductive Support Vector Machine algorithm
(T-SVM) (Joachims, 1999). The training examples are the source
task examples, i.e., human-Salmonella protein interactions. We
use the target task examples as the test data.
Training negatives: Since there are 62 known PPIs in the source
task, we sample a set of random 6200 human-Salmonella protein
pairs to maintain the positive:negative class ratio at 1:100.

Figure 4 depicts this setting. This method thus builds a model
by using data from both hosts. The optimization function of T-
SVM jointly minimizes the training error on the known human-
pathogen interactions and the label assignments on the unknown
plant-pathogen interactions. The set of target examples can not be
used entirely as it is very large and makes the T-SVM algorithm
very computationally expensive. Hence we randomly sample 1
percent of the target dataset. For the T-SVM based algorithm to be
effective, the kernel function that is used to compute the similarity
between examples matters a lot. We use a homology-based kernel
function that incorporates the BLAST similarity score between
the proteins. Let xi

s be the feature-vector representing a source
task example: the protein pair < ss, hs > where ss is the Salmonella
protein (i.e., the pathogen protein) and hs is the host protein. Let
the target task example be the protein pair < st, at > where at is
the Arabidopsis protein; and the corresponding feature vector be
xk

t . The kernel function that computes the similarity between the
given two pairs of proteins (i.e., their feature vectors) is defined as
shown below.

k(xi
s, xk

t ) = sim(ps, pt) + sim(hs, at) where

FIGURE 3 | Approach-1(b) Graph based interaction transfer. The big
circles show the two protein complexes found to be enriched by Network
Blast : the Arabidopsis protein complex on the left, and the human protein
complex on the right. The edges within a protein complex are the PPIs within

the host organism. The edges connecting the two protein complexes (i.e.,
the two circles) are the homology edges. The solid line connecting sipA with
a human protein node is a bootstrap interaction. We use this to infer the new
plant-Salmonella interaction indicated by the dotted line.
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FIGURE 4 | Transductive Support Vector Machine (SVM) for transfer

learning. The first panel shows the conventional SVM classifier. The
second panel shows T-SVM with circles representing unlabeled

examples. We use examples from the target task i.e.,
Arabidopsis-Salmonella protein pairs as the unlabeled examples to
influence the classifier boundary.

sim(m, n) = normalized − BLAST − score(m, n)

k(xi
s, x

j
s) = dot(xi

s, x
j
s) and k(xi

t, x
j
t) = dot(xi

t, x
j
t)

The first equation is used in the case where the two pro-
tein pairs come from different tasks. We use homology-distance
between the pathogen proteins and the host proteins to com-
pute the kernel. The homology distance itself is simply the
BLAST protein sequence alignment score. The next two equa-
tions show the computation when the examples both come from
the same task. Here we simply take the dot product of the
two feature vectors. This kernel is symmetric. The similarity
between two sequences sim(m, n) is computed using the bit-
score from BLAST sequence alignment, normalized using the
sequence length of the larger protein. We used the SVMlight

package (Joachims, 2008) and incorporated our kernel func-
tion into it. The parameter tuning for T-SVM (the regular-
ization parameter C) was done using cross validation on the
PPIs where we have the true labels. We found C = 0.1 was the
best setting. This best model is subsequently used to gener-
ate predictions on all Arabidopsis-Salmonella protein-pairs. The
model outputs a score indicating the distance from the clas-
sifier hyperplane. A positive score indicates that the protein-
pair is on the positive side of the hyperplane and hence closer
to the known interacting protein-pairs. All such protein-pairs
will be considered as potential interactions predicted by this
model.

3.3. APPROACH-3: KERNEL MEAN MATCHING
Our transfer learning scenario here consist of the following
setting: multiple “source” tasks with small amounts of labeled
data, a single “target” task with no labeled data. The first chal-
lenge is to pick the best instances from the source tasks, such
that the resultant model when applied on the target task gen-
erates high confidence predictions. Toward this, we use the
instance reweighting technique Kernel Mean Matching (KMM).
The reweighted source task instances are used to build a ker-
nelized support vector machine (SVM) model, which is applied
on the target task data to get the predicted PPIs. This brings
forth the second challenge—selecting appropriate hyperparam-
eters while building a model for a task with no labeled data.
For simplicity we also use the same set of features across all

tasks (protein sequence features). However the data distribu-
tion will be different across tasks due to the different organisms
involved.

This approach is based on instance-transfer where the goal
is to pick from each of the source tasks, the most rele-
vant instances w.r.t the target task. We use a two-step pro-
cess: (1) the first step does the instance weighting on the
source tasks. (2) the second step uses the reweighted instance
to build several SVM classifier models—one model for each
hyper-parameter setting. To deal with the second challenge,
we present two heuristic methods to select the best set of
hyperparameters.

3.3.1. Step-1: Instance reweighting
The similarity between the source and target data can be
expressed using the similarity in their distributions PS(x, y)
and Pt(x, y). Here PS represents the joint distribution of
all source tasks. Since we do not have access to the labels
y on the target, we make a simplifying assumption that
there is only a covariate shift between the source and tar-
get tasks—i.e., the conditional distribution P(y|x) is the

same for both tasks. Mathematically, PS(x,y)
Pt (x,y) = PS(x)

Pt (x) = r(x).

Many methods have been proposed for estimating the ratio
r. Sugiyama et al. (2008) proposed an algorithm Kullback-
Leibler Importance Estimation Procedure (KLIEP) to esti-
mate r directly without estimating the densities of the two
distributions.

We use the nonparametric Kernel Mean Matching (KMM)
(Huang et al., 2007), which was originally developed to han-
dle the problem of covariate shift between the training and test
data distributions. KMM reweighs the training data instances
such that the means of the training and test data distributions
are close in a reproducing kernel Hilbert space (RKHS). This
approach does not require distribution estimation. Let xS

i ∼ PS

and nS be the number of source instances from all source tasks.
Let xt

i ∼ Pt and nt be the number of target instances. Let βi

represent the “importance” of the source instances. KMM uses
a function based on the maximum mean discrepancy statistic
(MMD). In the form written below, it minimizes the differ-
ence between the empirical means of the joint source and target
distributions.
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min
β

∥∥∥∥∥∥
1

nS

nS∑

i = 1

βi�(xS
i ) − 1

nt

nt∑

j = 1

�(xt
j )

∥∥∥∥∥∥

2

⇔ min
β

1

n2
S

βTKβ − 2

n2
S

κTβ + C

subject to βi ∈ [0, B] and
∑

i

βi ≤ nS

where Ki,j = k(xS
i , xS

j ) and κi = nS

nt

nt∑

j = 1

k(xS
i , xt

j ) (1)

K is the kernel matrix over all the source examples. The func-
tion (1) is a quadratic program and can be efficiently solved
using sequential minimal optimization (SMO), projected gradi-
ent based methods. We use the KMM implementation from the
Shogun (Sonnenburg et al., 2010) package.

3.3.1.1. Selecting an appropriate set of source and target
instances. Using all instances in the optimization problem in
equation (1) is infeasible for two reasons. The optimization
involves the computation of the gram matrix K of O(n2) where n
is the number of instances. Typically the total number of protein-
protein pairs between a host-pathogen are of the order of 100
million. Secondly, the total number of labeled source instances
is quite small (≈ 1500). This set is likely to get underweighted
(i.e., βi ≈ 0) if there are too many unlabeled source instances. To
represent the source’s empirical mean, in addition to the labeled
instances we randomly sample four times as many unlabeled
instances. For the target, we randomly sampled nS instances.

3.3.2. Step-2: Model learning
Once we have the optimal set of source instances, we can train
a Kernel-SVM model using these. Along with the first step, we
thus call this two step process KMM-SVM. We pick a kernel-based
learning algorithm since we plan to extend our work to deal with
different feature spaces across the tasks. In such a scenario, the
only mechanism to operate on the target data is via similarities,
i.e., the kernel. The dual formulation for the weighted version
of SVM solves the following problem, where the weights βi were
obtained in Step-1.

min
α

nS∑

i = 1

αi − 1

2

∑

i,j

αiαjyiyjK(xS
i , xS

j ) subject to
∑

i

αiyi = 0

and βiC ≥ αi ≥ 0

3.3.3. Model selection
Parameter tuning and selecting the best model in the absence
of labeled data is a very hard problem. The model built on the
source data cannot be tuned using cross validation on the source
data because doing so will optimize it for the source distribution.
Hence we developed two heuristic approaches to select the best
hyperparameters. The first one uses the expected class-skew on
the target task while the second uses reweighted cross-validation.

Class-skew based parameter selection: We first built several
models by doing a grid-search on the classifier hyper-parameters.

There are 3 parameters to tune for the Kernel-SVM: the kernel
width γ , the cost parameter C, the weight parameter for the pos-
itive class w+. The total number of parameter combinations in
our grid-search were 50. We thus had 50 models trained on the
reweighted source data obtained after KMM in Step-1 (Section
3.3.1). We applied each model on the target data and computed
the predicted class-skew rpred using the predicted class labels.
The expected class skew based on our understanding of the PPI
experimental literature is roughly 1:100 (= rtrue). We ranked all
50 models on the statistic |rpred − rtrue|. The top k models were
selected based on this criteria and a weighted voting ensemble
was built using them. This ensemble was used to get the final class
label on the target data. We used k = 5.

Aggregating the models and assigning interaction scores: In our
experiments, we used k = 5 to pick the best models w.r.t the rank-
ing statistic described above. Note that each model gives us a
classifier score for every protein-pair in the test data, which can be
considered to be the probability of interaction. For k = 5, we have
five scores for each test protein-pair. These scores were aggregated
using two criteria:

(a) The majority vote over the five models where each model
votes “yes” if the output probability score is greater than or
equal to 0.5.

(b) The averaged of all five probability scores.

3.3.4. Spectrum RBF kernel
We used a variant of the spectrum kernel, based on the features
used by Dyer et al. (2007) for HIV-human PPI prediction. The
kernel uses the n-mers of a given input sequence and is defined as:

kn
sp(x, x′) = exp{−‖φn

sp(x)−φn
sp(x′)‖2

σ 2 }, where x, x′ are two sequences
over an alphabet 
. Instead of using the 20 amino acids as the
alphabet 
, we used a classification of the amino-acids. There are
seven classes based on the electrostatic and hydrophobic prop-
erties of proteins, i.e., |
| = 7. Here φn

sp transforms a sequence s
into a |
|n-dimensional feature-space. One dimension of φn

sp cor-
responds to the normalized frequency of one of the 7n possible
strings in s. We use n = 2, 3, 4, 5.

4. NEGATIVE EXAMPLES AND FEATURE-SET
Classification techniques need a negative class (set of non-
interactions) in order to identify the special characteristics of the
positives (i.e., interactions). Since there is no published experi-
mental evidence about “non-interacting” host-pathogen proteins
for any plant with Salmonella, we construct the negative class
using random pairs of proteins sampled from the set of all pos-
sible host-pathogen protein pairs. The number of random pairs
chosen as the negative class is decided by what we expect the
interaction ratio to be. It is a parameter that can be changed
as our knowledge of the size and nature of the host-pathogen
interactome improves.

The interaction ratio/ negative examples are used in different
ways as described below. The homology-based transfer method
does not directly use any negative examples/ interaction ratios.
In the case of T-SVM, while training the transductive model, we
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use negative examples from the source task. In the case of KMM-
SVM, the data used to build the model comes from the source
tasks, where negative examples from each source task are used.
Next, during the model selection phase we pick the best models
based on the interaction ratio of the model over the predictions
on the target task (See Section 3.3.3 for details). No explicit nega-
tive examples are used in this part; the interaction ratio is simply
used to pick the best model.

We initially chose a positive:negative class ratio of 1:100 mean-
ing that we expect 1 in every 100 random bacteria-human protein
pairs to interact with each other. This has been a common prac-
tice in host-pathogen PPI prediction in the past (Dyer et al., 2007;
Tastan et al., 2009). Recently published work (Mukhtar et al.,
2011) involving a yeast-2-hybrid study on plant-bacterial PPIs
suggests a higher interaction ratio of around 1:1000. Our choice
of 1:100 as the class-skew is an overestimate when considering
interactions with all Salmonella genes, but if we restrict the bind-
ing partners to only the so-called Salmonella effector proteins,
the ratio we use is reasonable. (There are ≈85 known Salmonella
effector genes). Also note that, while the exact examples that we
choose as negative data may not be true negatives, we expect the
false negative rate to be low enough (≈ 1%) to justify our choice
of this heuristic.

The class skew is an important parameter in any machine
learning method. The choice of this parameter determines the
properties of the resultant model. A very balanced class skew of
1:1 will result in a model that is over-predictive i.e., has a very
high false positive rate when applied on the target task. On the
other hand, a very skewed setting of 1:1000 could give a lower
false positive rate but is likely to have a poor recall as compared
to models with lower class skews. This parameter thus offers a
trade-off between the precision and recall of the resultant model.
Our choice of a class ratio of 1:100 will result in a higher recall as
compared to models trained on higher class skews. It will how-
ever, have some false positives. From a statistical perspective, a
model trained with a high class skew such as 1:1000 will cap-
ture the distribution of the negatives since they hugely outnumber
the positives. Since the negative class examples are not true neg-
atives, the goodness of a model which depends mostly on noisy
negatives is debatable. Computationally, the time required for
training a model increases as we increase the number of exam-
ples. In the case of a high class skew such as 1:1000, there will
be thousand times as many examples as the number of positives.
This makes training a model very slow, especially for the Kernel-
SVM algorithm and Transductive SVM models that are used by
our methods. Nonetheless, we also calculated the predictions for
a higher skew of 1:500. The results are described in Section 5.

The features used in each approach are shown in Table 1. A
detailed description of each feature and the biological significance
of it follows. We derive protein sequence based features similar
to the ones derived by Dyer et al. (2011) for HIV-human PPI
prediction.

• Protein sequence n-mer or n-gram features: Since the
sequence of a protein determines its function to a great extent,
it may be possible to predict PPIs using the amino acid
sequence of a protein pair. Shen et al. (2007) introduced the

“conjoint triad model” for predicting PPIs using only amino
acid sequences. Shen et al. (2007) partitioned the twenty
amino acids into seven classes based on their electrostatic and
hydrophobic properties. For each protein, they counted the
number of times each distinct three-mer (set of three consec-
utive amino acids) occurred in the sequence. To account for
protein size, they normalized these counts by linearly trans-
forming them to lie between 0 and 1 (see Shen et al. (2007)
for details). They represented the protein with a 343-element
feature vector, where the value of each feature is the nor-
malized count for each of the 343 (73) possible amino acid
three-mers. We use two-, three-, four-, and five-mers. For each
host-pathogen protein pair, we concatenated the feature vec-
tors of the individual proteins. Therefore, each host-pathogen
protein pair had a feature vector of length at most 98, 646, 4802,
and 33614, in the cases of two-, three-, four-, and five-mers,
respectively.

• Gene expression features: These features depend only on the
human protein (gene) involved in a human-Salmonella pro-
tein pair. We selected 3 transcriptomic datasets from GEO
(Barrett et al., 2011), which give the differential gene expres-
sion of human genes infected by Salmonella. The 3 datasets
(GDS77, GDS78, GDS80) give us a total of 7 features represent-
ing differential gene expression of human genes in 7 different
control conditions. The intuition behind this feature is that
genes that are significantly differentially regulated are more
likely to be involved in the infection process, and thereby in
interactions with bacterial proteins. Note: these were used in
only the human-Salmonella task.

• GO similarity features: These features model the similar-
ity between the functional properties of two proteins. These
were used in only the human-Salmonella task. Gene Ontology
(Ashburner et al., 2000) provides GO-term annotations for
three important protein properties: molecular function (F),
cellular component (C) and biological process (P). We derive
6 types of features using these properties. For each of “F,” “C,”
and “P,” two types of GO similarity features were defined: (a)
pair-level similarity and (b) similarity with human protein’s
binding partners. The similarity between two individual GO
terms was computed using the G-Sesame algorithm (Du et al.,
2009). This feature is a matrix of all the GO term combina-
tions found in a given protein pair: < ps, ph >, the rows of the
matrix represent GO terms from protein ps and the columns
represent GO terms from ph. Analogously, the second feature
type-(b) computes the similarity between the GO term sets of
the Salmonella protein and the human protein’s binding part-
ners in the human interactome. We used HPRD to get the
human interactome.

Code: The executable files from the packages used to build
our methods, and the scripts that we used to run these can
be downloaded here: http://www.cs.cmu.edu/~mkshirsa/data/
frontiers2014/code.zip.

5. RESULTS AND DISCUSSION
A quantitative evaluation on the target task i.e., plant-Salmonella
is currently not feasible as there is no known PPI data. Hence for
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the purpose of evaluation, we used some of the PPI datasets as
“sources” for building a model and one as the “target.” We evalu-
ate the machine-learning based methods in two settings of trans-
fer: pathogen-level transfer, where the host is fixed to be human
and the pathogen is one of various bacterial species. The second
setting host-level transfer, is more relevant and refers to the case
where the pathogen is fixed to be Salmonella and we modify the
host species. Since there are few known PPIs involving Salmonella,
we are only able to experiment with mouse as an alternate
host. There are 14 known mouse-Salmonella PPIs. Interestingly
they involve mouse proteins whose human homologs also inter-
act with the same Salmonella proteins—i.e., these 14 PPIs have
interologs in the human-Salmonella dataset.

Our evaluation criteria does not use accuracy (which mea-
sures performance on both the positives and negatives). Our PPI
datasets are highly imbalanced with a large number of nega-
tive samples, and a trivial classifier that calls all protein pairs as
“negative” will achieve a very good performance. So we instead
use precision (P), recall (R) and F-score(F1) computed on the
interacting pairs (positive class).

Precision(P) = true positives

predicted positives
;

Recall(R) = true positives

total true positives in data
;

F1 score (F1) = 2PR

P + R
.

The source tasks (i.e., training data) and target task (i.e., test
datasets) are shown in the Table 2. Parameters for all methods
are tuned using a class-skew based model selection similar to the
one described in Section 3.3.3 for the KMM-SVM method. We
compare the following machine-learning based methods:

1. Inductive Kernel-SVM (Baseline): This model assumes that
the source and target distributions are identical. All source
data is pooled together and used to build a single model. For
the kernel we used the RBF-spectrum kernel.

2. Transductive SVM (T-SVM): This is the method described in
Section 3.2.

3. KMM-SVM: This method is discussed in Section 3.3.

The host-level transfer performance is shown in the first two rows
of Table 2. The KMM-SVM based method performs much better
while transferring from Salmonella-human to Salmonella-mouse.
The recall is very high at 93.7 since the mouse-pathogen PPIs are
interologs of the human-pathogen PPIs. The precision is not as
high as some additional positives are predicted and we found that
they had a high classifier score. These “false positives” are likely to
be true interactions. For the reverse setting, T-SVM does slightly
better than the KMM-SVM and 2 points higher than the base-
line. Note that here, the source data is very small in size with only
14 PPIs. In the pathogen-level transfer, on the Salmonella-human
target task, the F1 of the KMM-SVM method is the highest at
19.9 and is 5 points better than the other two methods. On the

Table 2 | Performance of the machine learning based methods on

various transfer settings.

Source task(s)

(training data)

Target task

(test data)

Method P† R† F1†

HOST-LEVEL TRANSFER

Salmonella-
human

Salmonella-
mouse

Baseline 42.8 93.7 58.8

T-SVM 45.4 93.7 61.2
KMM-SVM 51.7 93.7 66.7

Salmonella-
mouse

Salmonella-
human

Baseline 95.4 33.8 50

T-SVM 67.5 43.5 52.9

KMM-SVM 100 35.5 52
PATHOGEN-LEVEL TRANSFER

Francisella- Salmonella-
human

Baseline 17.8 12.9 14.9

human, T-SVM 15 14.5 14.7
E.coli-human KMM-SVM 25.7 16.1 19.9

Francisella-
human,

E.coli-
human

Baseline 12.9 12.5 12.7

T-SVM 10.4 15.6 12.5
Salmonella-
human

KMM-SVM 15.9 21.9 18.4

We compare them with a simple baseline: inductive kernel-SVM. We report pre-

cision (P), recall (R) and f-score (F1). The data that was used to build each of

the models is shown in the first column. The second column shows the target

task—the data on which we evaluate the model. The numbers in bold font indi-

cate the highest performance in that column (i.e., for that metric).
†Computed using the default classifier threshold: 0.5.

The positive:negative class ratio in all datasets was 1:100.

The performance of a random classifier would be F-score = 1.

E.coli-human task, the performance is 18.4 which is 5.7 points
better than the other methods.

A very interesting observation to make from the table is, the
performance on the target task: Salmonella-human in the two
settings. In the host-level transfer, the F1 is 52 whereas in the
pathogen-level transfer it is much lower at 19.9. The hosts human
and mouse are much more similar than the group of bacterial
species namely: Salmonella, E. coli and F. tularensis. The source
tasks are indeed very critical in determining the performance on
the target.

5.1. ANALYSIS
We apply the models trained using the procedures from previous
sections on Arabidopsis-Salmonella protein-pairs to get predic-
tions for potential interactions. The homology based approach
does not assign any confidence scores to the predictions while
both T-SVM and KMM-SVM allow us to obtain a score for every
predicted interaction. All predictions from T-SVM with a positive
score (>0) are considered to be interacting. For the KMM-SVM
method, we filter the predictions using a threshold of 0.7 on
the averaged probability-score. (See Section 3.3.3 for details on
the probability score computation for the KMM-SVM method).
We chose this threshold of 0.7 since all positives in our training
data are assigned a score ≥0.7 by the classifier model. The full
lists of predicted interactions from all three approaches are avail-
able at the following link: http://www.cs.cmu.edu/~mkshirsa/
data/frontiers2014/predictions.zip.
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FIGURE 5 | Overlap amongst the novel PPI predictions from each

approach. All predictions from the homology based approach and the T-SVM
are shown. For the KMM-SVM method, we filter the predictions using a

threshold of 0.7 on the interaction probability reported by the classifier. We
picked this threshold based on the interaction probabilities reported on the
known interactions.

The total number of PPI predictions based on the score thresh-
olds described above are: 106,807 for homology-based, 1088 for
T-SVM and 163,644 from KMM-SVM. Hundreds of thousands
of interacting pairs may not be likely and we therefore expect that
many of the predictions are likely to be false positives (FPs). We
would like to emphasize that, by ranking the predictions on the
classifier scores and picking only the top few we are likely to filter
out most of the false positives, since the machine learning mod-
els are expected to score FPs lower than the true positives. The
threshold of 0.7 for KMM-SVM was chosen just to ensure con-
sistency with the threshold that we observed in the training data
(i.e., in the known interactions). If one considers say the top 10%
of the predictions from the KMM-SVM method, we have 1636
PPIs over ≈1300 unique Arabidopsis proteins and 5 Salmonella
proteins. Choosing by thresholding the prediction score is one
way to select potential interactions for further scrutiny. Another
approach is to analyze the predictions based on the biologi-
cal functions one is interested in. To demonstrate the type of
biological functions that are represented in the predictions, we
performed GO term enrichment analysis of the Arabidopsis pro-
teins involved in the predictions. We can then look at Arabidopsis
genes with the most enriched GO terms and what their predicted
Salmonella partners are.

A Venn diagram depicting the overlap between the predicted
pairs of proteins interacting according to the three approaches
is shown in Figure 5. The PPIs reported by each approach are
quite different from the others. Only 189 are shared between T-
SVM and KMM-SVM and 4305 between the homology approach
and KMM-SVM. No overlap was found between the homol-
ogy approach and the T-SVM approaches. These relatively small
overlaps are due to the different input sources (tasks) used by
each approach. Further, the machine-learning based approaches
KMM-SVM and T-SVM use a discriminative model which
employs negative examples whereas the heuristics based approach
does not use any such negative data and hence has a small overlap
with the other two. The two machine-learning based approaches
differ due to the use of different kernels. The KMM-SVM
approach is the only approach that shows overlap in predictions

to both, the heuristics and the T-SVM approaches, and the
results are therefore discussed in detail in the accompanying paper
(Schleker et al., 2015).

Because the ratio of 1 positive to 100 negative pairs likely over-
estimates the number of interactions, we next changed this ratio
to 1:500 and generated a new model. As expected, a much smaller
number of pairs are predicted namely, 6035. This is a more
manageable list and the predictions of the new model are pro-
vided at http://www.cs.cmu.edu/∼mkshirsa/data/frontiers2014/
predictions_class_skew_500.txt.

5.2. QUALITATIVE ANALYSIS OF PREDICTED INTERACTIONS
As with any predictions, experimental validation is ultimately
needed to verify them. The choice depends on the interest of the
experimentalist. Here we have chosen for discussion a few pre-
dictions that are interesting to us, but we encourage the reader
to look at the list of predictions for others of potential biological
interest.

We calculated Gene Ontology (GO) enrichment in the
Arabidopsis proteins predicted to be targeted by the Salmonella
proteins. We are interested in analyzing the characteristics of the
plant proteins predicted to be the most popular targets for patho-
genesis. We defined the “popular targets” using the following
criteria: (a) the Arabidopsis protein is predicted to be targeted by at
least 3 Salmonella effectors with a probability greater than 0.9 and
(b) the GO term annotations of the Arabidopsis protein are sig-
nificantly enriched [with a p-value of <0.001 as obtained by GO
enrichment analysis using FuncAssociate (Berriz et al., 2003)].
There are a total of 5247 Arabidopsis proteins satisfying these cri-
teria. In Table 3, we show 20 Arabidopsis genes selected randomly
from this set of highly targeted Arabidopsis proteins. In Table 4,
we show the list of all enriched GO terms.

For each gene we show the description and the enriched
GO annotations. Among the presented Arabidopsis proteins,
nearly one third are transcription factors. These function e.g.,
in hormone-mediated signaling pathways. It has been reported
that jasmonic acid and ethylene signaling pathways are involved
in plant defense response against Salmonella (Schikora et al.,
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Table 3 | GO terms that were enriched in the most targetted Arabidopsis proteins in our predictions.

Arabidopsis

(TAIR id)

Protein name/gene Enriched Gene Ontology annotations Enriched GO terms

(corresp. to column 3)

AT1G01030 B3 domain containing transcription factor Sequence-specific DNA binding transcription factor activity ;
regulation of transcription, DNA-templated

GO:0003700
GO:0006355

AT1G06160 Ethylene-responsive transcription factor
ERF094

DNA binding ; sequence-specific DNA binding transcription
factor activity ; regulation of transcription from
RNA-polymerase II promoter ; response to jasmonic acid
stimulus

GO:0003677
GO:0003700
GO:0006355
GO:0009753

AT1G01060 Myb-related putative transcription factor Response to cadmium ion ; response to salt stress ; response
to auxin stimulus ; response to cold

GO:0046686
GO:0009651
GO:0009733
GO:0009409

AT1G13180 Actin-related protein 3 Actin binding GO:0003779

AT2G40220 Ethylene-responsive transcription factor
ABI4. Protein glucose insensitive 6

DNA binding ; response to water deprivation ; positive
regulation of transcription, DNA-dependent ; sequence-specific
DNA binding

GO:0003677
GO:0009414
GO:0045893
GO:0043565

AT2G46400 Putative WRKY transcription factor 46 Response to chitin GO:0010200

AT1G01080 Ribonucleoprotein, putative nucleic acid binding ; RNA binding GO:0003676
GO:0003723

AT3G12110 Actin-11 Chloroplast stroma GO:0009570

AT3G56400 Probable WRKY transcription factor 70 Response to salicylic acid stimulus ; sequence-specific DNA
binding transcription factor activity ; protein amino acid binding

GO:0009751
GO:0003700
GO:0005515

AT1G01090 Pyruvate dehydrogenase E1 component
subunit alpha-3, chloroplastic

Chloroplast stroma GO:0009570

AT4G09570 Ca-dependent protein kinase 4 protein amino acid binding GO:0005515

AT1G01150 Homeodomain-like protein with
RING-type zinc finger domain

Zinc ion binding ; regulation of transcription, DNA-templated GO:0008270
GO:0006355

AT4G18170 Probable WRKY transcription factor 28 Regulation of transcription, DNA-templated ; sequence-
specific DNA binding transcription factor activity

GO:0006355
GO:0003700

AT1G01160 GRF1-interacting factor 2 Protein amino acid binding GO:0005515

AT1G01200 Ras-related protein RABA3 GTP binding; small GTPase mediated signal transduction ;
protein transport

GO:0005525
GO:0007264
GO:0015031

AT5G47220 Ethylene-responsive transcription factor 2 Positive regulation of transcription, DNA-dependent ; ethylene
mediated signaling pathway

GO:0045893
GO:0009873

AT1G01250 Ethylene-responsive TF ERF023 Sequence-specific DNA binding transcription factor activity ;
nuclear envelope

GO:0003700
GO:0005634

AT1G01350 Zinc finger CCCH domain-containing
protein 1

Nucleic acid binding ; zinc ion binding GO:0003676
GO:0008270

AT1G01370 Histone H3-like centromeric protein
HTR12

DNA binding ; protein amino acid binding GO:0003677
GO:0005515

To get this list, we performed a GO term enrichment analysis using the FuncAssociate tool (Berriz et al., 2003). We then procure the set of Arabidopsis genes which

correspond to the enriched GO terms; i.e., GO terms with a p-value of <0.001. We further filter this set to include only those Arabidopsis genes predicted to interact

with at least 3 Salmonella effector proteins. In this table, we show around 20 such Arabidopsis genes for the lack of space. The remaining are available via the

download link.
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Table 4 | List of all enriched GO terms obtained by applying

enrichment analysis tool FuncAssociate (Berriz et al., 2003) on the set

of highly targeted Arabidopsis proteins (i.e., Arabidopsis proteins

predicted to interact with at least 3 Salmonella effectors).

GO term Description

GO:0003676 Nucleic acid binding

GO:0003677 DNA binding

GO:0003700 Sequence-specific DNA binding TF activity

GO:0003723 RNA binding

GO:0003735 Structural constituent of ribosome

GO:0003755 peptidyl-prolyl cis-trans isomerase activity

GO:0003779 Actin binding

GO:0003899 DNA-directed RNA polymerase activity

GO:0004298 Threonine-type endopeptidase activity

GO:0004693 Cyclin-dependent protein serine/threonine kinase activity

GO:0004842 Ubiquitin-protein transferase activity

GO:0004871 Signal transducer activity

GO:0005484 SNAP receptor activity

GO:0005507 Copper ion binding

GO:0005509 Calcium ion binding

GO:0005515 Protein binding

GO:0005525 GTP binding

GO:0005576 Extracellular region

GO:0005622 Intracellular region

GO:0005634 Nuclear envelope

GO:0005839 Proteasome core complex

GO:0005840 Ribosome

GO:0006351 Transcription, DNA-templated

GO:0006355 Regulation of transcription, DNA-templated

GO:0006412 Translation

GO:0006413 Translational initiation

GO:0006457 Protein folding

GO:0006511 Ubiquitin-dependent protein catabolic process

GO:0007264 Small GTPase mediated signal transduction

GO:0007267 Cell-cell signaling

GO:0008233 Peptidase activity

GO:0008270 Zinc ion binding

GO:0008794 Arsenate reductase (glutaredoxin) activity

GO:0009408 Response to heat

GO:0009409 Response to cold

GO:0009414 Response to water deprivation

GO:0009570 Chloroplast stroma

GO:0009579 Thylakoid

GO:0009651 Response to salt stress

GO:0009733 Response to auxin

GO:0009737 Response to abscisic acid

GO:0009739 Response to gibberellin

GO:0009751 Response to salicylic acid

GO:0009753 Response to jasmonic acid

GO:0009828 Plant-type cell wall loosening

GO:0009873 Ethylene mediated signaling pathway

GO:0010200 Response to chitin

GO:0015031 Protein transport

GO:0015035 Protein disulfide oxidoreductase activity

(Continued)

Table 4 | Continued

GO term Description

GO:0016491 Oxidoreductase activity

GO:0016607 Nuclear speck

GO:0016762 Xyloglucan:xyloglucosyl transferase activity

GO:0022626 Cytosolic ribosome

GO:0022627 Cytosolic small ribosomal subunit

GO:0042254 Ribosome biogenesis

GO:0042742 Defense response to bacterium

GO:0043565 Sequence-specific DNA binding

GO:0045454 Cell redox homeostasis

GO:0045892 Negative regulation of transcription, DNA-templated

GO:0045893 Positive regulation of transcription, DNA-templated

GO:0046686 Response to cadmium ion

GO:0046872 Metal ion binding

GO:0051726 Regulation of cell cycle

The shown terms had a p-value less than 0.001.

2008). Other examples that highlight the role of transcription fac-
tors in plant-pathogen interaction are e.g., that a Xanthomonas
effector protein targets an ethylene responsive transcription fac-
tor (ERF) in tomato to inhibit ethylene induced transcription
(Kim et al., 2013) and systemic immunity in barley induced by
Xanthomonas and Pseudomonas bacteria may involve WRKY and
ERF-like transcription factors (Dey et al., 2014). Further, actin-11
and actin-related proteins involved in actin polymerization and
depolymerization are obtained. It is well known that Salmonella
translocates effectors into the mammalian host cell in order to
interact with actin and e.g., modify the cell cytoskeleton to allow
bacterial entry (for review see Schleker et al., 2012). Our analysis
revealed growth regulating factor 1 (GRF1)-interacting factor 2, a
transcriptional co-activator which is part of a regulatory complex
with GRF1 and microRNA (miRNA) 396. MiRNAs are involved
in plant disease resistance to bacteria and miRNA396 has been
shown to be upregulated in plants upon flg22 treatment (Li et al.,
2010). Liu et al. (2014) reported that putative GRF1 targets in
Arabidopsis are heavily involved in biosynthetic and metabolic
pathways, e.g., phenylpropanoid, amino acids and lignin biosyn-
thesis as well as plant hormone signal transduction indicating the
role of GRF1 in plant defense mechanisms. Other examples of
predicted interactions and more details of their possible relevance
in Salmonella-plant interplay are discussed in the accompanying
paper (Schleker et al., 2015).

5.3. LIMITATIONS AND FUTURE WORK
In this paper, we addressed the challenge of predicting the
Salmonella-Arabidopsis interactome in the absence of any exper-
imentally known interactions. Previous work in this area was
based purely on homology between human and Arabidopsis
proteins and was therefore limited to proteins that do display
sequence similarity. Due to the large divergence between the two
organisms, this approach neglects a large fraction of potential
Arabidopsis targets. We therefore presented here three different
sophisticated computational and machine learning methods to
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predict hereto unknown Salmonella-plant interactions from a rel-
atively small list of known Salmonella-human interactions. This
is a very challenging task because it is not possible to quan-
titatively validate the predictions. Nonetheless, the predictions
provide a gold-mine for discovery because they provide experi-
mentally testable hypotheses on the communication mechanisms
between plant and Salmonella without restriction to known effec-
tors in the pathogen or sequences of similarity to those observed
in better studied eukaryotic organisms. With these advantages
comes a set of limitations to be aware of.

Since machine learning methods need some known interac-
tions to evaluate the models on, and to pick the best set of
predictions, their application in the current paper has limita-
tions. For example, we can obtain different predictions from our
methods by varying the parameters, especially the class skew (we
studied the ratios 1:100 and 1:500 in this paper). Because there
are currently no known Salmonella-plant interactions, we are not
able to quantify which of these sets of predictions is more reliable.
Augmenting the predictions with some other biological informa-
tion from the target task can help in picking the most plausible
PPIs. This is a direction for future research. Further,

1. The interactome predicted by each method is not the true
interactome, but is a set of predictions. There will be false
positive and false negative interactions. Thus, each individual
prediction has to be considered a hypothesis not a fact.

2. In line with point 1 above, the size of the predicted interac-
tomes does not necessarily relate to the true interactome. We
dont know how many interactions to expect. Our different
predictions vary greatly in size, with one method predicting
only one thousand interactions, while others predict more
than 100,000 interactions. While it is more likely that smaller
numbers of interactions are more likely, it does not mean that
this method is inherently better than the other methods.

3. The size of the predicted interactions list also depends on a
critical parameter, the positive to negative class ratio. This
parameter is important but it is tuneable, so the methods
validity is not dependent on its choice. However, it is impor-
tant to appreciate that the predictions will differ greatly when
this parameter is changed. Thus, biological insight in choosing
predictions to validate still needs to be applied, regardless of
the prior choice of ratio in generating the model.

These general limitations in the context of the specific results
of the models presented here translate to the following issues,
pointed out by a reviewer of this paper: The data presented for
the KMM-SVM model indicate that 163,644 PPIs are predicted
(Figure 5). This is of the same order of magnitude as the number
of false positives that would be predicted, given the reported
false positive rate of the method that indicate ≈180,000 false
positive PPIs would be expected. This raises the possibility
that the bulk of the predictions may be false positives. The
data presented for the KMM-SVM model also indicates that
25,124 distinct Arabidopsis genes participate in PPIs with 31
distinct Salmonella genes (Figure 5). This implies that 91% of the
Arabidopsis protein-coding gene complement (TAIR10: 27,416
genes— http://www.arabidopsis.org/portals/genAnnotation/

gene_structural_annotation/annotation_data.jsp) enters into
productive interaction with only 31 Salmonella proteins. It also
implies that, on average, each interacting Salmonella protein is
capable of productive interaction with over 5000 Arabidopsis
proteins. It is unlikely that this is the case, again suggesting that a
large number of false positives have to be expected.
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